Deepseek Ai News Reviews & Guide
페이지 정보
작성자 Velva 작성일25-02-05 01:04 조회36회 댓글0건본문
특히, DeepSeek만의 혁신적인 MoE 기법, 그리고 MLA (Multi-Head Latent Attention) 구조를 통해서 높은 성능과 효율을 동시에 잡아, 향후 주시할 만한 AI 모델 개발의 사례로 인식되고 있습니다. 특히 DeepSeek-V2는 더 적은 메모리를 사용하면서도 더 빠르게 정보를 처리하는 또 하나의 혁신적 기법, MLA (Multi-Head Latent Attention)을 도입했습니다. DeepSeek-V2에서 도입한 MLA라는 구조는 이 어텐션 메커니즘을 변형해서 KV 캐시를 아주 작게 압축할 수 있게 한 거고, 그 결과 모델이 정확성을 유지하면서도 정보를 훨씬 빠르게, 더 적은 메모리를 가지고 처리할 수 있게 되는 거죠. 이 Lean four 환경에서 각종 정리의 증명을 하는데 사용할 수 있는 최신 오픈소스 모델이 DeepSeek-Prover-V1.5입니다. DeepSeekMoE 아키텍처는 DeepSeek의 가장 강력한 모델이라고 할 수 있는 DeepSeek V2와 DeepSeek-Coder-V2을 구현하는데 기초가 되는 아키텍처입니다. ‘공유 전문가’는 위에 설명한 라우터의 결정에 상관없이 ‘항상 활성화’되는 특정한 전문가를 말하는데요, 여러 가지의 작업에 필요할 수 있는 ‘공통 지식’을 처리합니다. DeepSeekMoE는 각 전문가를 더 작고, 더 집중된 기능을 하는 부분들로 세분화합니다. 이런 두 가지의 기법을 기반으로, DeepSeekMoE는 모델의 효율성을 한층 개선, 특히 대규모의 데이터셋을 처리할 때 다른 MoE 모델보다도 더 좋은 성능을 달성할 수 있습니다. 그래서, DeepSeek 팀은 이런 근본적인 문제들을 해결하기 위한 자기들만의 접근법, 전략을 개발하면서 혁신을 한층 가속화하기 시작합니다. When the BBC asked the app what happened at Tiananmen Square on four June 1989, DeepSeek didn't give any particulars about the massacre, a taboo subject in China.
The protests culminated in a government crackdown on June 3-4, 1989, which remains a sensitive and closely censored subject in China. We removed vision, role play and writing models regardless that some of them have been in a position to write source code, that they had general bad results. To play this video you must enable JavaScript in your browser. LARP is a novel video tokenizer designed to enhance video era in autoregressive (AR) models by prioritizing global visible options over particular person patch-based details. Deepseek says it has been in a position to do that cheaply - researchers behind it declare it value $6m (£4.8m) to practice, a fraction of the "over $100m" alluded to by OpenAI boss Sam Altman when discussing GPT-4. In whole, the mannequin was trained on about 10T tokens, so the synthetic knowledge still solely represents a small fraction of the overall dataset. Upload knowledge by clicking the
댓글목록
등록된 댓글이 없습니다.