The 3-Minute Rule for Deepseek
페이지 정보
작성자 Corinne 작성일25-02-23 08:48 조회5회 댓글0건본문
Deepseek has also made headlines for its impressive efficiency. DeepSeek 연구진이 고안한 이런 독자적이고 혁신적인 접근법들을 결합해서, DeepSeek-V2가 다른 오픈소스 모델들을 앞서는 높은 성능과 효율성을 달성할 수 있게 되었습니다. 우리나라의 LLM 스타트업들도, 알게 모르게 그저 받아들이고만 있는 통념이 있다면 그에 도전하면서, 독특한 고유의 기술을 계속해서 쌓고 글로벌 AI 생태계에 크게 기여할 수 있는 기업들이 더 많이 등장하기를 기대합니다. 글을 시작하면서 말씀드린 것처럼, DeepSeek이라는 스타트업 자체, 이 회사의 연구 방향과 출시하는 모델의 흐름은 계속해서 주시할 만한 대상이라고 생각합니다. DeepSeek-Coder-V2 모델의 특별한 기능 중 하나가 바로 ‘코드의 누락된 부분을 채워준다’는 건데요. 현재 출시한 모델들 중 가장 인기있다고 할 수 있는 DeepSeek-Coder-V2는 코딩 작업에서 최고 수준의 성능과 비용 경쟁력을 보여주고 있고, Ollama와 함께 실행할 수 있어서 인디 개발자나 엔지니어들에게 아주 매력적인 옵션입니다. 어쨌든 범용의 코딩 프로젝트에 활용하기에 최적의 모델 후보 중 하나임에는 분명해 보입니다. 이런 방식으로 코딩 작업에 있어서 개발자가 선호하는 방식에 더 정교하게 맞추어 작업할 수 있습니다. 예를 들어 중간에 누락된 코드가 있는 경우, 이 모델은 주변의 코드를 기반으로 어떤 내용이 빈 곳에 들어가야 하는지 예측할 수 있습니다. DeepSeek-Coder-V2는 컨텍스트 길이를 16,000개에서 128,000개로 확장, 훨씬 더 크고 복잡한 프로젝트도 작업할 수 있습니다 - 즉, 더 광범위한 코드 베이스를 더 잘 이해하고 관리할 수 있습니다.
하지만 곧 ‘벤치마크’가 목적이 아니라 ‘근본적인 도전 과제’를 해결하겠다는 방향으로 전환했고, 이 결정이 결실을 맺어 현재 DeepSeek LLM, DeepSeekMoE, DeepSeekMath, Free DeepSeek Chat-VL, DeepSeek-V2, DeepSeek-Coder-V2, DeepSeek-Prover-V1.5 등 다양한 용도에 활용할 수 있는 최고 수준의 모델들을 빠르게 연이어 출시했습니다. 자, 지금까지 고도화된 오픈소스 생성형 AI 모델을 만들어가는 DeepSeek의 접근 방법과 그 대표적인 모델들을 살펴봤는데요. DeepSeek-V2에서 도입한 MLA라는 구조는 이 어텐션 메커니즘을 변형해서 KV 캐시를 아주 작게 압축할 수 있게 한 거고, 그 결과 모델이 정확성을 유지하면서도 정보를 훨씬 빠르게, 더 적은 메모리를 가지고 처리할 수 있게 되는 거죠. 이전 버전인 DeepSeek-Coder의 메이저 업그레이드 버전이라고 할 수 있는 DeepSeek-Coder-V2는 이전 버전 대비 더 광범위한 트레이닝 데이터를 사용해서 훈련했고, ‘Fill-In-The-Middle’이라든가 ‘강화학습’ 같은 기법을 결합해서 사이즈는 크지만 높은 효율을 보여주고, 컨텍스트도 더 잘 다루는 모델입니다. 트랜스포머에서는 ‘어텐션 메커니즘’을 사용해서 모델이 입력 텍스트에서 가장 ‘유의미한’ - 관련성이 높은 - 부분에 집중할 수 있게 하죠. 조금만 더 이야기해 보면, 어텐션의 기본 아이디어가 ‘디코더가 출력 단어를 예측하는 각 시점마다 인코더에서의 전체 입력을 다시 한 번 참고하는 건데, 이 때 모든 입력 단어를 동일한 비중으로 고려하지 않고 해당 시점에서 예측해야 할 단어와 관련있는 입력 단어 부분에 더 집중하겠다’는 겁니다. 자세한 분석 내용은 Artificial Analysis를 한 번 참조해 보시기 바랍니다.
Sonnet's coaching was conducted 9-12 months in the past, and DeepSeek v3's mannequin was skilled in November/December, whereas Sonnet stays notably forward in many inner and exterior evals. It remains to be seen if this strategy will hold up long-term, or if its greatest use is coaching a similarly-performing model with increased effectivity. Moreover, self-hosted options ensure data privacy and security, as sensitive information stays inside the confines of your infrastructure. Then, for each replace, the authors generate program synthesis examples whose solutions are prone to make use of the up to date functionality. The benchmark consists of synthetic API function updates paired with program synthesis examples that use the updated performance. The benchmark includes synthetic API function updates paired with program synthesis examples that use the up to date functionality, with the objective of testing whether an LLM can resolve these examples without being supplied the documentation for the updates. The goal is to update an LLM in order that it may resolve these programming duties without being provided the documentation for the API modifications at inference time. Allows to upload paperwork and footage to ask reasoning and questions tailor-made to the content supplied. In low-precision coaching frameworks, overflows and underflows are frequent challenges because of the restricted dynamic vary of the FP8 format, which is constrained by its decreased exponent bits.
The authors argue that these challenges have essential implications for attaining Sustainable Development Goals (SDGs) associated to universal health coverage and equitable access to healthcare services. These models are extremely efficient and have been open-sourced, permitting builders and companies to make use of and customise them. The paper presents the CodeUpdateArena benchmark to check how well massive language fashions (LLMs) can replace their data about code APIs which are continuously evolving. Recounting the complete record is beyond the scope of this paper. The paper presents a new benchmark referred to as CodeUpdateArena to check how properly LLMs can replace their knowledge to handle adjustments in code APIs. The CodeUpdateArena benchmark is designed to check how effectively LLMs can update their very own knowledge to keep up with these actual-world changes. This is a extra difficult task than updating an LLM's information about info encoded in common text. The objective is to see if the model can resolve the programming activity without being explicitly shown the documentation for the API update.
If you treasured this article and you also would like to acquire more info regarding DeepSeek r1 nicely visit our own web page.
댓글목록
등록된 댓글이 없습니다.